Skip to main navigation menu Skip to main content Skip to site footer

Effect of Coconut Fiber and Ground Granulated Blast Furnace Slag on the Flexural Strength, Toughness and Deformation of Foamed Concrete

Abstract

To reduce environmental pollution and decrease cement consumption, ground granulated blast furnace slag (GGBS) was used as a partial replacement (10 wt.%) to produce foamed concrete. The results showed that GGBS addition did not significantly modify the flexural strength of foamed concrete, but increased its brittleness, reducing deformation at peak load by 70%. To improve these properties, coconut fibers were added (up to 0.5 vol.%) leading to higher mechanical strength and toughness. Based on the flexural strength of foamed concrete, the optimal fiber content was 0.4 vol.% depending if GGBS was added (improvement 21.3%) or not (16.7%). Coconut fibers were also found to improve the flexural toughness by two to three times compared to neat foamed concrete with or without GGBS at 2 mm of deflection. To get more information on the flexural behavior, strain gauges were used to measure the axial and transverse strains, clearly showing the positive role of coconut fiber addition on improving the mechanical properties of foamed concrete, especially for the strain energy densities. Finally, scanning electron microscopy (SEM) was used to analyze the samples morphology and explain the mechanical results.

Keywords

Foamed concrete, Coconut fiber, Ground granulated blast furnace slag, Flexural properties, Microstructure

PDF

References

  1. R.T. Kou, M.Z. Guo, Y.Y. Shi, M.F. Mei, L.H. Jiang, H.Q. Chu, Y.Z. Zhang, H.Q. Shen, L.K. Xue, Sound-insulation and photocatalytic foamed concrete prepared with dredged sediment, Journal of Cleaner Production 356 (2022). https://doi.org/10.1016/j.jclepro.2022.131902
  2. Z.A. Al-Absi, M.I.M. Hafizal, M. Ismail, Innovative PCM-incorporated foamed concrete panels for walls? exterior cladding: An experimental assessment in real-weather conditions, Energ Buildings 288 (2023). https://doi.org/10.1016/j.enbuild.2023.113003
  3. O. Gencel, A. Sari, G. Kaplan, A. Ustaoglu, G. Hekimoglu, O.Y. Bayraktar, T. Ozbakkaloglu, Properties of eco-friendly foam concrete containing PCM impregnated rice husk ash for thermal management of buildings, J Build Eng 58 (2022). https://doi.org/10.1016/j.jobe.2022.104961
  4. Y.H.M. Amran, N. Farzadnia, A.A.A. Ali, Properties and applications of foamed concrete; a review, Constr Build Mater 101 (2015) 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112
  5. L.L. Guan, Y.G. Chen, D.B. Wu, Y.F. Deng, Foamed concrete utilizing excavated soil and fly ash for urban underground space backfilling: Physical properties, mechanical properties, and microstructure, Tunn Undergr Sp Tech 134 (2023). https://doi.org/10.1016/j.tust.2023.104995
  6. C.X. Zhang, X.J. Tan, H.M. Tian, W.Z. Chen, Lateral compression and energy absorption of foamed concrete-filled polyethylene circular pipe as yielding layer for high geo-stress soft rock tunnels, Int J Min Sci Techno 32(5) (2022) 1087-1096. https://doi.org/10.1016/j.ijmst.2022.08.011
  7. C. Rudolph, J. Valore, Cellular concrete part 1 compositions and methods of preparation, ACI Mater J 50(5) (1954) 24. https://doi.org/10.14359/11794
  8. C. Rudolph, J. Valore, Cellular concrete part 2 physical properties, ACI Mater J 50(6) (1954) 20. https://doi.org/10.14359/11795
  9. K. Ramamurthy, E.K.K. Nambiar, G.I.S. Ranjani, A classification of studies on properties of foam concrete, Cement Concrete Comp 31(6) (2009) 388-396. https://doi.org/10.1016/j.cemconcomp.2009.04.006
  10. C. Liu, Y.L. Xiong, Y.N. Chen, L.T. Jia, L. Ma, Z.C. Deng, Z.B. Wang, C. Chen, N. Banthia, Y.M. Zhang, Effect of sulphoaluminate cement on fresh and hardened properties of 3D printing foamed concrete, Compos Part B-Eng 232 (2022). https://doi.org/10.1016/j.compositesb.2022.109619
  11. M.P. Liu, Z.K. Liu, K. Wang, C.Y. Ma, H.B. Zhang, P.Z. Zhuang, Strength and deformation performances of silt-based foamed concrete under triaxial shear loading, J Build Eng 60 (2022). https://doi.org/10.1016/j.jobe.2022.105237
  12. J.Y. Shi, Y.C. Liu, H.J. Xu, Y.M. Peng, Q. Yuan, J.L. Gao, The roles of cenosphere in ultra-lightweight foamed geopolymer concrete (UFGC), Ceram Int 48(9) (2022) 12884-12896. https://doi.org/10.1016/j.ceramint.2022.01.161
  13. J.T. Dang, S.B. Zhao, G.L. Chen, X.X. Cao, J.L. Yang, Effect of polyethylene powder and heating treatment on the microstructure and hardened properties of foam concrete, J Build Eng 50 (2022). https://doi.org/10.1016/j.jobe.2022.104143
  14. K. Pasupathy, S. Ramakrishnan, J. Sanjayan, Enhancing the properties of foam concrete 3D printing using porous aggregates, Cement Concrete Comp 133 (2022). https://doi.org/10.1016/j.cemconcomp.2022.104687
  15. O. Gencel, B. Balci, O.Y. Bayraktar, M. Nodehi, A. Sari, G. Kaplan, G. Hekimog, A. Gholampour, A. Benli, T. Ozbakkaloglu, The effect of limestone and bottom ash sand with recycled fine aggregate in foam concrete, J Build Eng 54 (2022). https://doi.org/10.1016/j.jobe.2022.104689
  16. M.A.O. Mydin, M.N.M. Nawi, R. Omar, M.A. Khadimallah, I.M. Ali, R. Deraman, The use of inorganic ferrous-ferric oxide nanoparticles to improve fresh and durability properties of foamed concrete, Chemosphere 317 (2023). https://doi.org/10.1016/j.chemosphere.2022.137661
  17. C. Liu, Y.N. Chen, Y.L. Xiong, L.T. Jia, L. Ma, X.G. Wang, C. Chen, N. Banthia, Y.M. Zhang, Influence of HPMC and SF on buildability of 3D printing foam concrete: From water state and flocculation point of view, Compos Part B-Eng 242 (2022). https://doi.org/10.1016/j.compositesb.2022.110075
  18. K. Selija, I.S.R. Gandhi, Comprehensive investigation into the effect of the newly developed natural foaming agents and water to solids ratio on foam concrete behaviour, J Build Eng 58 (2022). https://doi.org/10.1016/j.jobe.2022.105042
  19. Y.L. Xiong, C. Zhang, C. Chen, Y.M. Zhang, Effect of superabsorbent polymer on the foam-stability of foamed concrete, Cement Concrete Comp 127 (2022). https://doi.org/10.1016/j.cemconcomp.2021.104398
  20. N.P. Tran, T.N. Nguyen, T.D. Ngo, P.K. Le, T.A. Le, Strategic progress in foam stabilisation towards high-performance foam concrete for building sustainability: A state-of-the-art review, Journal of Cleaner Production 375 (2022). https://doi.org/10.1016/j.jclepro.2022.133939
  21. S.L. Zhang, X.Q. Qi, S.Y. Guo, L. Zhang, J. Ren, A systematic research on foamed concrete: The effects of foam content, fly ash, slag, silica fume and water-to-binder ratio, Constr Build Mater 339 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127683
  22. M.G. Li, H.B. Tan, X.Y. He, S.W. Jian, G.Y. Li, J.J. Zhang, X.F. Deng, X.L. Lin, Enhancement in compressive strength of foamed concrete by ultra-fine slag, Cement Concrete Comp 138 (2023). https://doi.org/10.1016/j.cemconcomp.2023.104954
  23. O.H. Oren, A. Gholampour, O. Gencel, T. Ozbakkaloglu, Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate, Constr Build Mater 238 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117774
  24. K.H. Yang, K.H. Lee, J.K. Song, M.H. Gong, Properties and sustainability of alkali-activated slag foamed concrete, Journal of Cleaner Production 68 (2014) 226-233. https://doi.org/10.1016/j.jclepro.2013.12.068
  25. Y.F. Hao, G.Z. Yang, K.K. Liang, Development of fly ash and slag based high-strength alkali-activated foam concrete, Cement Concrete Comp 128 (2022). https://doi.org/10.1016/j.cemconcomp.2022.104447
  26. J. He, Q. Gao, X.F. Song, X.L. Bu, J.H. He, Effect of foaming agent on physical and mechanical properties of alkali-activated slag foamed concrete, Constr Build Mater 226 (2019) 280-287. https://doi.org/10.1016/j.conbuildmat.2019.07.302
  27. H.Z. Zhang, Y.C. He, C. Wang, Y.H. Guan, Z. Ge, R.J. Sun, Y.F. Ling, B. Savija, Statistical mixture design for carbide residue activated blast furnace slag foamed lightweight concrete, Constr Build Mater 342 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127840
  28. D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study, Compos Struct 209 (2019) 45-59. https://doi.org/10.1016/j.compstruct.2018.10.092
  29. D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density, Constr Build Mater 198 (2019) 479-493. https://doi.org/10.1016/j.conbuildmat.2018.11.197
  30. O. Gencel, S.M.S. Kazmi, M.J. Munir, G. Kaplan, O.Y. Bayraktar, D.O. Yarar, A. Karimipour, M.R. Ahmad, Influence of bottom ash and polypropylene fibers on the physico-mechanical, durability and thermal performance of foam concrete: An experimental investigation, Constr Build Mater 306 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124887
  31. D. Falliano, S. Parmigiani, D. Suarez-Riera, G.A. Ferro, L. Restuccia, Stability, flexural behavior and compressive strength of ultra-lightweight fiber-reinforced foamed concrete with dry density lower than 100 kg/m(3), J Build Eng 51 (2022). https://doi.org/10.1016/j.jobe.2022.104329
  32. R. Tang, Q.S. Wei, K. Zhang, S. Jiang, Z.M. Shen, Y.X. Zhang, C.W.K. Chow, Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete, J Build Eng 57 (2022). https://doi.org/10.1016/j.jobe.2022.104948
  33. O. Gencel, M. Nodehi, O.Y. Bayraktar, G. Kaplan, A. Benli, A. Gholampour, T. Ozbakkaloglu, Basalt fiber-reinforced foam concrete containing silica fume: An experimental study, Constr Build Mater 326 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126861
  34. M. Mastali, P. Kinnunen, H. Isomoisio, M. Karhu, M. Illikainen, Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates, Constr Build Mater 187 (2018) 371-381. https://doi.org/10.1016/j.conbuildmat.2018.07.228
  35. O. Gencel, O.Y. Bayraktar, G. Kaplan, A. Benli, G. Martinez-Barrera, W. Brostow, M. Tek, B. Bodur, Characteristics of hemp fibre reinforced foam concretes with fly ash and Taguchi optimization, Constr Build Mater 294 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123607
  36. J. Huang, G.X. Tian, P.Y. Huang, Z.B. Chen, Flexural Performance of Sisal Fiber Reinforced Foamed Concrete under Static and Fatigue Loading, Materials 13(14) (2020). https://doi.org/10.3390/ma13143098
  37. J. Huang, D. Rodrigue, Stiffness Behavior of Sisal Fiber Reinforced Foam Concrete under Flexural Loading, J Nat Fibers 19(15) (2022) 12251-12267. https://doi.org/10.1080/15440478.2022.2054896
  38. B. Raj, D. Sathyan, M.K. Madhavan, A. Raj, Mechanical and durability properties of hybrid fiber reinforced foam concrete, Constr Build Mater 245 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118373
  39. S.H.A. Shah, M.T. Amir, B. Ali, M.H. El Ouni, Mechanical performance and environmental impact of normal strength concrete incorporating various levels of coconut fiber and recycled aggregates, Environ Sci Pollut R 29(55) (2022) 83636-83651. https://doi.org/10.1007/s11356-022-21608-w
  40. M. Khan, M. Ali, Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber, Constr Build Mater 182 (2018) 703-715. https://doi.org/10.1016/j.conbuildmat.2018.06.150
  41. P.O. Awoyera, O.L. Odutuga, J.U. Effiong, A.D.S. Sarmiento, S.J. Mortazavi, J.W. Hu, Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre, Materials 15(13) (2022). https://doi.org/10.3390/ma15134520
  42. M. Khan, M. Ali, Improvement in concrete behavior with fly ash, silica-fume and coconut fibres, Constr Build Mater 203 (2019) 174-187. https://doi.org/10.1016/j.conbuildmat.2019.01.103
  43. C.L. Pereira, H. Savastano, J. Paya, S.F. Santos, M.V. Borrachero, J. Monzo, L. Soriano, Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber, Industrial Crops and Products 49 (2013) 88-96. https://doi.org/10.1016/j.indcrop.2013.04.038
  44. M. Amaguana, L. Guaman, N.B.Y. Gomez, M. Khorami, M. Calvo, J. Albuja-Sanchez, Test Method for Studying the Shrinkage Effect under Controlled Environmental Conditions for Concrete Reinforced with Coconut Fibres, Materials 16(8) (2023). https://doi.org/10.3390/ma16083247
  45. M. Ramli, W.H. Kwan, N.F. Abas, Strength and durability of coconut-fiber-reinforced concrete in aggressive environments, Constr Build Mater 38 (2013) 554-566. https://doi.org/10.1016/j.conbuildmat.2012.09.002
  46. M. Ali, A. Liu, H. Sou, N. Chouw, Mechanical and dynamic properties of coconut fibre reinforced concrete, Constr Build Mater 30 (2012) 814-825. https://doi.org/10.1016/j.conbuildmat.2011.12.068
  47. W.J. Wang, N. Chouw, The behaviour of coconut fibre reinforced concrete (CFRC) under impact loading, Constr Build Mater 134 (2017) 452-461. https://doi.org/10.1016/j.conbuildmat.2016.12.092
  48. H.Y. Bui, D. Levacher, M. Boutouil, N. Sebaibi, Effects of Wetting and Drying Cycles on Microstructure Change and Mechanical Properties of Coconut Fibre-Reinforced Mortar, J Compos Sci 6(4) (2022). https://doi.org/10.3390/jcs6040102
  49. M. Ali, X.Y. Li, N. Chouw, Experimental investigations on bond strength between coconut fibre and concrete, Mater Design 44 (2013) 596-605. https://doi.org/10.1016/j.matdes.2012.08.038
  50. Z. Tang, Z. Li, J. Hua, S. Lu, L. Chi, Enhancing the damping properties of cement mortar by pretreating coconut fibers for weakened interfaces, Journal of Cleaner Production 379 (2022). https://doi.org/10.1016/j.jclepro.2022.134662
  51. W. Ahmad, S.H. Farooq, M. Usman, M. Khan, A. Ahmad, F. Aslam, R. Alyousef, H. Alabduljabbar, M. Sufian, Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete, Materials 13(5) (2020). https://doi.org/10.3390/ma13051075
  52. J. Huang, S.C. Qiu, D. Rodrigue, Parameters estimation and fatigue life prediction of sisal fibre reinforced foam concrete, J Mater Res Technol 20 (2022) 381-396. https://doi.org/10.1016/j.jmrt.2022.07.096
  53. C.C.A.f.E.C.S. CECS13., In: Standard test methods for fiber reinforced concrete. China Plan. Press; (2009).
  54. C. Mimistry of housing and urban-rural development, Steel fiber reinforced concrete, 2015.
  55. J. Huang, K. Xiao, D. Rodrigue, Flexural creep of multi-wall carbon nanotube reinforced cement based composites under high stress level, Journal of Materials Research and Technology 24 (2023) 9866-9883. https://doi.org/10.1016/j.jmrt.2023.05.206