Skip to main navigation menu Skip to main content Skip to site footer

Abiotic Degradation and Composting Behavior of 3D-Printed PLA and PLA/Wood Biocomposites

Abstract

The use of 3D printing technology is growing due to its ease of use, accessibility, and potential to produce complex and functional products. In the construction and building industries, 3D printing is used to produce intricate enclosures, building components, furniture designs, and household items. However, the accessibility of this technology is accompanied by the generation of polymeric residues, especially poly(lactic acid) (PLA), which is also prone to abiotic degradation. In this context, the present work aims to analyze the abiotic degradation and composting behavior of 3D-printed PLA and its wood biocomposite. The printed materials were subjected to accelerated weathering and characterized in terms of their physical and mechanical properties, as well as their surface chemical changes via FTIR. Additionally, disintegration and mineralization under composting conditions were evaluated, including a preliminary assessment of microplastics generation. The results showed that, as expected, the initial porosity was higher in the biocomposite (12.5%) than in the neat PLA (7.5%); however, after weathering, it increased to 13.2% in the pure biopolymer, while the biocomposite remained almost unaffected. This behavior is attributed to the wood particles, which inhibited the hydrolysis of PLA under weathering and water immersion. The wood particles also reduced microplastics generation without affecting the ultimate biodegradation, with calculated maximum mineralization values of approximately 75%.

Keywords

Poly(lactic acid), Biocomposites, 3D-printing, Degradation, Composting

PDF

References

  1. Andrady, A. L. (2017). The plastic in microplastics: A review. Marine Pollution Bulletin, 119(1), 12-22. https://doi.org/10.1016/j.marpolbul.2017.01.082
  2. Azka, M. A., Sapuan, S. M., Abral, H., Zainudin, E. S., & Aziz, F. A. (2024). An examination of recent research of water absorption behavior of natural fiber reinforced polylactic acid (PLA) composites: A review. International Journal of Biological Macromolecules, 268, 131845. https://doi.org/10.1016/j.ijbiomac.2024.131845
  3. Benhami, V. M. L., Longatti, S. M. de O., Moreira, F. M. de S., & Sena Neto, A. R. de. (2024). Biodegradation of poly(lactic acid) waste from 3D printing. Polímeros, 34(2), e20240013. https://doi.org/10.1590/0104-1428.20230058
  4. Bhagia, S., Bornani, K., Agarwal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., Bhagia, M., Yoo, C. G., Zhao, X., Kunc, V., Pu, Y., Ozcan, S., & Ragauskas, A. J. (2021). Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries. Applied Materials Today, 24, 101078. https://doi.org/10.1016/j.apmt.2021.101078
  5. Chopra, S., Pande, K., Puranam, P., Deshmukh, A. D., Bhone, A., Kale, R., Galande, A., Mehtre, B., Tagad, J., & Tidake, S. (2023). Explication of mechanism governing atmospheric degradation of 3D-printed poly(lactic acid) (PLA) with different in-fill pattern and varying in-fill density. RSC Advances, 13(11), 7135-7152. https://doi.org/10.1039/D2RA07061H
  6. Cisneros-López, E. O., Pal, A. K., Rodriguez, A. U., Wu, F., Misra, M., Mielewski, D. F., Kiziltas, A., & Mohanty, A. K. (2020). Recycled poly(lactic acid)-based 3D printed sustainable biocomposites: A comparative study with injection molding. Materials Today Sustainability, 7-8, 100027. https://doi.org/10.1016/j.mtsust.2019.100027
  7. da Silva, S. A., Faccin, D. J. L., & Cardozo, N. S. M. (2024). A kinetic-based criterion for polymer biodegradability applicable to both accelerated and standard long-term composting biodegradation tests. ACS Sustainable Chemistry & Engineering, 12(32), 11856-11865. https://doi.org/10.1021/acssuschemeng.3c03837
  8. Dogru, A., Sozen, A., Neser, G., & Seydibeyoglu, M. O. (2021). Effects of aging and infill pattern on mechanical properties of hemp reinforced PLA composite produced by fused filament fabrication (FFF). Applied Science and Engineering Progress, 14(4), 651-660. https://doi.org/10.14416/j.asep.2021.08.007
  9. Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. T. (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing, 63, 76-84. https://doi.org/10.1016/j.compositesa.2014.04.003
  10. Figueroa-Velarde, V., Diaz-Vidal, T., Cisneros-López, E. O., Robledo-Ortiz, J. R., López-Naranjo, E. J., Ortega-Gudiño, P., & Rosales-Rivera, L. C. (2021). Mechanical and physicochemical properties of 3D-printed agave fibers/poly(lactic acid) biocomposites. Materials, 14(11), 3111. https://doi.org/10.3390/ma14113111
  11. Gallardo-Cervantes, M., González-García, Y., Pérez-Fonseca, A. A., González-López, M. E., Manríquez-González, R., Rodrigue, D., & Robledo-Ortíz, J. R. (2021). Biodegradability and improved mechanical performance of polyhydroxyalkanoates/agave fiber biocomposites compatibilized by different strategies. Journal of Applied Polymer Science, 138(12), 50182. https://doi.org/10.1002/app.50182
  12. González-López, M. E., Martín Del Campo, A. S., Robledo-Ortíz, J. R., Arellano, M., & Pérez-Fonseca, A. A. (2020). Accelerated weathering of poly (lactic acid) and its biocomposites: A review. Polymer Degradation and Stability, 179, 109290. https://doi.org/10.1016/j.polymdegradstab.2020.109290
  13. Gramazio, F., Kohler, M., & Willmann, J. (2014). The robotic touch: How robots change architecture. Park Books.
  14. Husárová, L., Pekař, Š., Stloukal, P., Kucharzcyk, P., Verney, V., Commereuc, S., Ramone, A., & Koutny, M. (2014). Identification of important abiotic and biotic factors in the biodegradation of poly (L-lactic acid). International Journal of Biological Macromolecules, 71, 155-162. https://doi.org/10.1016/j.ijbiomac.2014.04.050
  15. Jain, P. K., & Jain, P. K. (2021). Use of 3D printing for home applications: A new generation concept. Materials Today: Proceedings, 43(1), 605-607. https://doi.org/10.1016/j.matpr.2020.12.145
  16. Jiang, N., Li, Y., Li, Y., Yu, T., Li, Y., Li, D., Xu, J., Wang, C., & Shi, Y. (2020). Effect of short jute fibers on the hydrolytic degradation behavior of poly(lactic acid). Polymer Degradation and Stability, 178, 109214. https://doi.org/10.1016/j.polymdegradstab.2020.109214
  17. Joseph, T. M., Kallingal, A., Suresh, A. M., Sreekumar, P. R. S., Paul, M. T. P., & John, H. (2023). 3D printing of polylactic acid: Recent advances and opportunities. The International Journal of Advanced Manufacturing Technology, 125, 1015-1035. https://doi.org/10.1007/s00170-022-10795-y
  18. Kalita, N. K., Sarmah, A., Bhasney, S. M., Kalamdhad, A., & Katiyar, V. (2021). Demonstrating an ideal compostable plastic using biodegradability kinetics of poly(lactic acid) (PLA) based green biocomposite films under aerobic composting conditions. Environmental Challenges, 3, 100030. https://doi.org/10.1016/j.envc.2021.100030
  19. Koelmans, A.A., Bakir, A., Burton, G.A., & Janssen, C.R. (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environmental Science & Technology, 50(7), 3315-3326. https://doi.org/10.1021/acs.est.5b06069
  20. La Fuente Arias, C. I., González-Martínez, C., & Chiralt, A. (2024). Biodegradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing phenolic compounds in seawater in laboratory testing conditions. Science of The Total Environment, 944, 173920. https://doi.org/10.1016/j.scitotenv.2024.173920
  21. Liao, J., & Chen, Q. (2021). Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation. Journal of Hazardous Materials, 418, 126329. https://doi.org/10.1016/j.jhazmat.2021.126329
  22. Lin, W., Xie, G., & Qiu, Z. (2019). Effects of ultraviolet aging on properties of wood flour-poly(lactic acid) 3D printing filaments. BioResources, 14(4), 8689-8700. https://doi.org/10.15376/biores.14.4.8689-8700
  23. Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques: A review. Chemosphere, 73(4), 429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064
  24. Martín Del Campo, A. S., Robledo-Ortíz, J. R., Arellano, M., Rabelero, M., & Pérez-Fonseca, A. A. (2021). Accelerated weathering of polylactic acid/agave fiber biocomposites and the effect of fiber-matrix adhesion. Journal of Polymers and the Environment, 29(3), 937-947. https://doi.org/10.1007/s10924-020-01936-z
  25. Medina, J., Roche, Y., Maldonado, O., Hernández, J. C., & Zapata, C. (2018). Hydrolytic degradation and biodegradation of binary mixes of polylactic acid (PLA) with plastic residues. Revista Ingeniería UC, 25(2), 248-258.
  26. Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519-5558. https://doi.org/10.1039/D0GC01647K
  27. Ning, X., Liu, T., Wu, C., & Wang, C. (2021). 3D printing in construction: Current status, implementation hindrances, and development agenda. Advances in Civil Engineering, 2021, Article 6665333. https://doi.org/10.1155/2021/6665333
  28. Petchwattana, N., Channuan, W., Naknaen, P., & Narupai, B. (2019). 3D printing filaments prepared from modified poly(lactic acid)/teak wood flour composites: An investigation on the particle size effects and silane coupling agent compatibilization. Journal of Physical Science, 30(2), 169-188. https://doi.org/10.21315/jps2019.30.2.10
  29. Sawpan, M., Islam, M. R., Beg, M. D. H., & Pickering, K. (2019). Effect of accelerated weathering on physico-mechanical properties of polylactide bio-composites. Journal of Polymers and the Environment, 27(5), 942-955. https://doi.org/10.1007/s10924-019-01405-2
  30. Van Cauwenberghe, L., Devriese, L., Galgani, F., Robbens, J., & Janssen, C.R. (2015)
  31. Microplastics in sediments: A review of techniques, occurrence and effects. Marine Environmental Research, 111, 5-17. https://doi.org/10.1016/j.marenvres.2015.06.007
  32. Wang, D. K., Varanasi, S., Fredericks, P. M., Hill, D. J. T., Symons, A. L., Whittaker, A. K., & Rasoul, F. (2013). FT-IR characterization and hydrolysis of PLA-PEG-PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. Journal of Polymer Science, Part A: Polymer Chemistry, 51(24), 5163-5176. https://doi.org/10.1002/pola.26930
  33. Yaisun, S., & Trongsatitkul T. (2023). PLA-based hybrid biocomposites: Effects of fiber type, fiber content, and annealing on thermal and mechanical properties. Polymers, 15, 4106. https://doi.org/10.3390/polym15204106
  34. Yang, S., & Du, P. (2022). The application of 3D printing technology in furniture design. Scientific Programming, 2022, 1960038. https://doi.org/10.1155/2022/1960038
  35. Yin, H., Qu, M., Zhang, H., & Lim, Y. (2018). 3D printing and buildings: A technology review and future outlook. Technology, Architecture + Design, 2(1), 94-111. https://doi.org/10.1080/24751448.2018.1420968
  36. Zaaba, N.F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering and Science, 60, 2061-2075. https://doi.org/10.1002/pen.25511