Skip to main navigation menu Skip to main content Skip to site footer

Non-isothermal Crystallization Behaviors of Coal Gangue/PBAT Composites Prepared via Solution Blending

Abstract

In order to lessen the environmental pollution caused by coal gangue and facilitate its utilization in the polymer industry, a study on the melting and crystallization behaviors of coal gangue/Polybutylene adipate terephthalate (PBAT) composites was conducted using a differential scanning calorimetry (DSC). The results indicate that a small amount of coal gangue enhances nucleation ability, perfection degree of PBAT crystals, and accelerates PBAT crystallization rate. However, excessive coal gangue hinders PBAT crystallization. These outcomes are confirmed by Crystallization Rate Coefficient (CRC) and Mandelkern method.

Keywords

Coal gangue, PBAT, Crystallization, DSC

PDF

References

  1. Zhao Y, Yang C, Li K, et al. Toward understanding the activation and hydration mechanisms of composite activated coal gangue geopolymer [J]. Construction and Building Materials, 2022, 318: 1567. https://doi.org/10.1016/j.conbuildmat.2021.125999
  2. Qin Z, Jin J, Lü X. Insights into mechanical property and damage evaluation of a novel waste-based coal gangue-filled backfill [J]. Construction and Building Materials, 2023, 389: 131802. https://doi.org/10.1016/j.conbuildmat.2023.131802
  3. Feng D, Wang J, Wang Y. Alkali-activated geopolymer materials prepared from coal gangue and municipal solid waste incineration byproducts [J]. Journal of Building Engineering, 2023, 80(1): 108074. https://doi.org/10.1016/j.jobe.2023.108074
  4. Qin Q, Geng H, Deng J. Al and other critical metals co-extraction from coal gangue through delamination pretreatment and recycling strategies [J]. Chemical Engineering Journal, 2023, 477: 147036. https://doi.org/10.1016/j.cej.2023.147036
  5. Zhu X, Gong W, Wang L, Reclamation of waste coal gangue activated by Stenotrophomonas maltophilia for mine soil improvement: Solubilizing behavior of bacteria on nutrient elements [J]. Journal of Environmental Management, 2022, 320:115865. https://doi.org/10.1016/j.jenvman.2022.115865
  6. Mei Y, Pang J, Wang X, et al. Coal gangue geopolymers as sustainable and cost-effective adsorbents for efficient removal of Cu (II) [J]. Environmental Technology & Innovation, 2023, 32: 103416. https://doi.org/10.1016/j.eti.2023.103416
  7. Gong G, Xie B, Yang M, et al. Mechanical properties and fracture behavior of injection and compression molded polypropylene/coal gangue powder composites with and without a polymeric coupling agent [J]. Composites: Part A, 2007, 38: 1683-1693. https://doi.org/10.1016/j.compositesa.2007.02.002
  8. Li C, Liao H, Gao H, et al. A facile green and cost-effective manufacturing process from coal gangue-reinforced composites [J]. Composites Science and Technology, 2023, 233: 109908. https://doi.org/10.1016/j.compscitech.2023.109908
  9. Wang Y, Liang L, Zhu B, et al. Economical preparation of Fe3O4/C/CG and Fe/C/CG composites as microwave absorbents by recycling of coal gangue [J]. Materials Research Bulletin, 2022, 146: 111573. https://doi.org/10.1016/j.materresbull.2021.111573
  10. Zhang W,Yang H,Zhang S, et al., Study on comprehensive properties of polyurethane used as curing material of coal gangue, Science of Soil and Water Conservation, 2024, 22(3):109-119.
  11. Li C, Liao H, Gao H, et al., Enhancing interface compatibility in high-filled coal gangue/polyethylene composites through silane coupling agent-mediated interface modification, Composites Science and Technology, 2024, 251:110546. https://doi.org/10.1016/j.compscitech.2024.110546
  12. Liu Y, Xie B, Yang W, et al. The composition, morphology, and mechanical properties of ethylene propylene diene monomer-encapsulated coal gangue powder/polypropylene composites. Polymer Composites, 2010, 31(1): 10-17. https://doi.org/10.1002/pc.20804
  13. Li Y, Ren N, Wang Y, et al., Synthesis and properties of polyacrylamide/hollow coal gangue spheres superabsorbent composites. Journal of Applied Polymer Science, 2013, 130(3): 2184-2187. https://doi.org/10.1002/app.39441
  14. Miguel G, Aimee A H, Adriana B E. Modeling and optimization of mechanical, water vapor permeability and haze properties of PLA and PBAT films reinforced with montmorillonite, halloysite nanotubes and palygorskite using artificial neural networks and genetic algorithms. Food Packaging and Shelf Life, 2025, 49:101533. https://doi.org/10.1016/j.fpsl.2025.101533
  15. Sivanantham G, Divakaran D, Suyambulingam I, et al., Isolation and characterization of microcrystalline cellulose from rice stalk agro-waste and its application in enhancing inherent properties of PBAT biofilm. Process Safety and Environmental Protection, 2025, 196: 106864. https://doi.org/10.1016/j.psep.2025.106864
  16. Liu J, Zhang X, Wang H. et al., Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe3O4 Carbon Nanotubes. Journal of Renewable Materials, 2025,13(4), 669-685. https://doi.org/10.32604/jrm.2025.02025-0042
  17. He Y, Shao L, Liu M, et al. Preparation and properties of expandable graphite-modified straw fiber@PBAT foamed bead composites. Fine Chemicals, 2025, 42(1): 103-110.
  18. Khanna, Y. P. A barometer of crystallization rates of polymeric materials. Polym. Eng. Sci., 1990, 30(24), 1615-1619. https://doi.org/10.1002/pen.760302410
  19. Song J, Chen Q, Ren M, et al., Effect of Partial Melting on the Crystallization Kinetics of Nylon-1212. Journal of Polymer Science: Part B: Polymer Physics, 2005, 43: 3222–3230. https://doi.org/10.1002/polb.20525
  20. Li J, Qiu Z. Nonisothermal Melt Crystallization Study of Poly (ethylene succinate)/ Cellulose Nanocrystals Composites. Journal of Polymers and the Environment, 2022, 30:1518-1527. https://doi.org/10.1007/s10924-021-02294-0
  21. Chen T, Zhang J. Non-isothermal cold crystallization kinetics of poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) copolyesters with different compositions. Polymer Testing, 2015, 48: 23-30. https://doi.org/10.1016/j.polymertesting.2015.09.008
  22. Tjong S. C, Xu S. Ai. Non-isothermal crystallization kinetics of calcium carbonate-filled β-crystalline phase polypropylene composites. polymer international, 1997, 44(1): 95-103. https://doi.org/10.1002/(SICI)1097-0126(199709)44:1<95::AID-PI821>3.0.CO;2-L
  23. Razavi-Nouri M, Salavati M. Physico–mechanical properties of poly(ethylene-co-vinyl acetate)/acrylonitrile-butadiene rubber/multi-walled carbon nanotubes nanocomposites. Polymer composites, 2025, 43(7): 4358-4370. https://doi.org/10.1002/pc.26697
  24. Fava, R. A. Methods of Experimental Physics; Academic: New York, 1980, p 16.
  25. Zhang, Q. X.; Zhang, Z. H.; Zhang, H. F.; Mo, Z. S. J Polym Sci Part B: Polym Phys 2002, 40, 1790-1791. https://doi.org/10.1002/polb.10114.abs
  26. Zhang S, Wang Z, Guo B, et al., Secondary nucleation in polymer crystallization: A kinetic view. Polymer Crystallization, 2021, 4(3). https://doi.org/10.1002/pcr2.10173
  27. Macedo T C P, Campos D A T, Lima T N. et al., Non-isothermal Crystallization Kinetics, Thermal, and Rheological Behavior of Linear/Branched Polypropylene Blends. Macromolecular Symposia, 2022, 406(1). https://doi.org/10.1002/masy.202200042
  28. Zhao Z, Balu R, Choudhury N R. et al., The effect of tetra-needle-like zinc oxide whisker as additive on the crystallization kinetics of polybutylene adipate terephthalate/polylactic acid blend. Polymer Engineering & Science, 2024, 64(9): 4079-4098. https://doi.org/10.1002/pen.26834
  29. Wang X, Huang G, Zhou S, et al., Effect of crystallization behavior on wear properties of polytetrafluoroethylene composites modified by irradiation above melting point. Polymer composites, 2025, 46(1): 809-816. https://doi.org/10.1002/pc.29026
  30. Kissinger, H. E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand., 1956, 57, 217-222. https://doi.org/10.6028/jres.057.026
  31. Svoboda R, Machotová J. How Depolymerization-Based Plasticization Affects the Process of Cold Crystallization in Poly(P-Dioxanone). Macromolecular Rapid Communications, 2024, 45(20). https://doi.org/10.1002/marc.202400369
  32. Dantas L, Araújo A, Barros J, et al., Using Urban Residue in Polylactic Acid Composites Part I: Effect of Castor Oil on the Crystallization Kinetics, Macromolecular Reaction Engineering, 2024, 19(2). https://doi.org/10.1002/mren.202400039